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A diffusion-equation approach to the collisional radiative recombination and ionization processes in
plasmas is improved in order to be applicable to low density plasmas. Dense excited levels are assumed
to be quasicontinuous and thus treated by Fokker-Planck equations in the nearest neighbor (nn) approxi-
mation, and a few levels lying below the bottleneck are retained explicitly as a discrete set. These cou-
pled equations are solved iteratively, which in turn allows incorporation of the corrections to the nn ap-
proximation. The method has been tested for the simple hydrogen plasma in a steady state. The numeri-
cal results agree with the exact solutions. Extensions of this approach to nonequilibrium plasmas and

complex plasmas of heavy ions are discussed.

PACS number(s): 52.20.—j, 52.80.—s

I. INTRODUCTION

Many studies have been carried out in recent years to
model laboratory and astrophysical plasmas which are of
interesting importance in a multitude of applications [1].
Plasma parameters of interest are wide ranged, with tem-
peratures from sub eV to tens of keV and densities from
10° cm 3 to 10%* cm ™3, where the latter corresponds to
the near normal density of solids. Modeling and diagnos-
tics of such diverse plasmas cannot be carried out by one
single theory, which may be too complex and unwieldy.
Approximate theories have to be carefully tailored to suit
particular systems. For high-density plasmas, where ei-
ther local thermodynamic equilibrium (LTE) or partial
LTE prevails, several models of the rate equation ap-
proach have been successfully built, by combining a large
number of states which are in LTE into one pseudo level.
This greatly simplifies the system and makes the other-
wise insurmountable problem solvable [2,3].

For low-density plasmas of interest in the present
study, with density 10'® cm™2 or less, LTE is not a good
approximation for low-lying levels, and it is often neces-
sary to solve a large set of rate equations for these non-
LTE levels. The coupled rate equations depend on the
various atomic (and ionic) processes which take place in-
side plasmas [4]. The necessary atomic input data for the
rate equations are expressed in terms of the electron-ion
transition rates for collisional excitation, deexcitation and
ionization, radiative decay and recombination, and relat-
ed resonant processes. (In addition, ion-atom and ion-ion
interactions are also important, but we do not consider
them explicitly here.) The reaction rates are usually eval-
uated theoretically, assuming that (a) the plasma elec-
trons and ions are in local thermal equilibrium, and (b)
the plasma environment (created mainly by ions) does not
affect the electronic rates themselves, in terms of its
microfield distortion. Evidently, both these assumptions
are only partially valid in many cases, and can seriously
affect the outcome of analyses. Plasma electrons cause
collisional transitions among the atomic (and ionic) lev-
els, and this is the subject of the present study. The plas-
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ma field distortions will be treated in later reports.

The collisional transition effect of plasma electrons and
radiative coupling are conventionally treated by a set of
rate equations. (Collisions of the target with plasma ions,
leading to charge exchange and ionization, also seem to
be important but are neglected here.) The resulting
steady-state solutions provide population densities of the
excited states of ions, and also the effective collisional-
radiative recombination and ionization rates for the
ground state, i.e., a; and S;, respectively. Two ap-
proaches have been developed in the past in the construc-
tion of the rate equations, where the excited states of the
ions are treated either as discrete levels or as continuous.
The number of states included in the first approach can
be very large [5—7], often reaching many thousands of ex-
cited Rydberg states and several charge states. For ions
with more than one electron, multiple excited states are
present. Dynamical properties of densely populated lev-
els are probably similar to each other. In addition, when
the plasma distortions due to plasma ions are introduced,
identification of these excited states is no longer possible,
due to the strong field mixing of closely packed Rydberg
states. The continuum approach [8—11] may therefore be
more convenient for treating the closely spaced levels of
mixed spectra. A proper adjustment of the input rates
and their spread in energy due to field mixing [13] is
necessary, but such a program is in general difficult to
carry out. Nevertheless, the continuum treatment in the
form of Fokker-Planck equations [8—11] may be the most
effective at high densities ( > 10'® cm™3) where collisional
processes dominate over the radiative effects.

We examine in this paper the continuum approach to
ionic state distribution developed previously [8—-12] and
critically assess its applicability for low-density plasmas.
The study is carried out for the hydrogen model plasma,
where the complications due to the presence of mul-
ticharged ions and resonant processes are absent. Our
discussion focuses on weakly coupled low- and medium-
density plasmas, with densities of 108-10'® cm ™3 and
temperatures in the range of 0.5-5 eV. As will be
shown, the previous formulation cannot adequately de-
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scribe the low-density plasmas, even in their steady state.
The theory is improved here to remedy some of these
difficulties. For strongly coupled plasmas of high density,
the overall theories may simplify while the plasma field
effect becomes more critical. The transient problem is
treated in a separate report [14], where a low-density,
low-temperature plasma formed by two merged beams of
electrons and ions is studied as they relaxed in their rela-
tive rest frame.

II. THE RATE EQUATION APPROACH

In the hydrogen plasma model of Bates, Kingston, and
McWhirter (BKM) [5], the collisional-radiative recom-
bination of electrons with bare protons to form hydrogen
atoms was discussed. The rate of change of the popula-
tion density of level p at time ¢ is given by

P, c
n,=—n,[nH,+A,]+n. 3 n,Ko,+ 3 p.ngAg
q¥p q>p

+ncnI[ch +Bp] ’ (1)

- P -
where #,=K,, +2q;erq, ')4!’.__2‘1 <pApg- In (1), n,
and n; are the population densities of free electrons and
bare protons, K, is the rate coefficient for the three-body
recombination process from c(continuum)— p(discrete),

K, is the rate coefficient for the inverse, collisional ion-
ization process, K, is the rate coefficient for the col-

lisional excitation or deexcitation transitions from p —gq,
B, is the rate coefficient for radiative recombination pro-
cess c—p, and A4,, is the spontaneous transition proba-
bility from p-—gq, with p >g. We introduce a high p
cutoff at p=p.. This is a nontrivial modification of the
original BKM model. It takes into account the collective
effect of plasma electrons, as a Debye screening of the
target ions, with p,~(kT/n,)"/* in au. This cutoff
places an upper bound on the total number of recom-
bined hydrogen atoms, thus making the model more real-
istic. The principal assumptions introduced in the con-
struction of Eq. (1) are as follows.

(i) The continuum electron density n, and the bare ion
density n; are held constant during the entire period of
relaxation (for neutral plasmas, we also have n,=n,).
This makes the model simple, but can result in unrealisti-
cally large final state populations for low-lying states,
especially at low temperatures.

(ii) The distribution among the degenerate sublevels of
a given principal quantum number p is assumed statisti-
cal, i.e., the angular and azimuthal quantum numbers are
averaged over. This is reasonable when collisions that
mix degenerate states are very rapid.

(iii) The plasma is optically thin so that all the radia-
tion emitted during the relaxation to stationary states es-
capes without reabsorption. This limits the validity of
the model to low and medium densities. The plasma
boundary effects are also ignored.

When p is large enough, p >p, for some number p,,
collisional processes become dominant so that the popu-
lation density n, of hydrogen in the excited state p, is
close to the Saha equilibrium value,
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ny=p>[h?/2amkT **exp(I, /KT )n n, , 2)

where I, is the ionization potential. The parameter p;
depends on the free electron density as well as tempera-
ture T. Therefore, for convenience, the population densi-
ty may be normalized, i.e.,

P,=n,/n; , (3)
which then has the property that

P,~1, p2p, . 4)
By detailed balance

ngKop=n,K,., nK,=nK, , (5)

and the rate equations (1) become

Pe
P,=—P,[nH,+A,]+n. 3 P,K,

q9#p
Pe ng n.n;
+ 2 Pq;';qu+ncKpc+7Bp .
g>p 3 P

(6)

Because of the property (4), (6) is effectively truncated to
a finite set of p; equations; that is, for p, <p,q <p,, we set
P,=11n (6). Generally, the excited states with large p re-
lax much faster than the ground state in the case of hy-
drogen plasma. Therefore, as was done originally by
Bates, Kingston, and McWhirter [5], a quasi-steady-state
solution may be obtained by setting Pp =0,(p7#1) in (6)

and by writing P, in the form
P,=r)+rlP,, (p#1). )

The parameters rg and rp1 are obtained by inverting a
(ps —1)X(py —1) matrix formed from a part of the right
hand side of (6) for p7=1. Substitution of (7) into the
equation for P, eliminates the quantities P,,p=23,...,

and gives
P,=[n.n;/n¢la;—n,S,P, , (8)

where a; and S, are the collisional-radiative recombina-
tion and ionization coefficients [S] for the ground state
p=1. When the system achieves a final equilibrium state,
we set P, =0 and obtain P, =[n;/n{]1[a;/S;]. All the
other population densities can then be obtained by substi-
tuting this expression for P, into (7).

III. A MODIFIED FOKKER-PLANCK
APPROACH

A bound electron in state p undergoes level to level
transitions, caused by collisions with plasma electron per-
turbers. It often follows a long and irregular path among
the ionic energy levels before reaching the final state.
This meandering path is sometimes interrupted by radia-
tive decays. Thus the analogy between the motion of the
electron in the energy level space of the atom and the
“random walk” of a Brownian particle in a liquid may be
exploited in formulating the plasma electron effect [12],
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especially when nearest-neighbor (nn) collisions dom-
inate. Such a formulation was given earlier [8-12], but
its applicability has not been thoroughly investigated. In
this paper, we reexamine the theory for hydrogenic plas-
mas and improve the model so as to be applicable at low
densities.

The dense spectrum of the upper Rydberg states of hy-
drogen atom is suitable for a quasicontinuum treatment,
but the low-lying levels are widely spaced so that (i) the
continuum treatment of these levels is a poor approxima-
tion. Furthermore, (ii) the radiative processes are nonlo-
cal in the sense that the Markov nn approximation is a
very poor approximation, and (iii) the higher states cut
off by screening (p >p.) must be imposed to make the
model realistic. (iv) The rates are in general distorted by
plasma ions so that the rates evaluated at zero density
may need adjustment. (v) For low-temperature plasmas,
the densities n. and n; may not be constant in the
steady-state limit because of the electron capture.

Based on these considerations, we treat here the prob-
lems (i)—(iii) by separating several low-lying levels from
the closely packed upper levels, and apply the continuum
treatment for the upper levels. That is, we have
1=<p =<p, for the discrete levels and p, <p <p. for the
continuum, where p, is the bottleneck p. This separation
requires an iterative procedure between the discrete and
continuum parts. Determination of p, is based on the
condition to be described below, and it usually assumes
the value p, ~2-4 in the hydrogen plasma for the densi-
ties considered here, and increases with decreasing densi-
ty. In practice of course this value is not known a priori,
and we simply take a value, say p, =4. The final result
should be insensitive to this if p, is chosen large enough.
The separation and subsequent iterative procedure
rectifies the difficulties (i)—(iii) and is the main departure
of our approach from the earlier formulation. In particu-
lar, this allows inclusion of the corrections to Markov ap-
proximation. The difficulties (iv) and (v) are treated in
separate reports [14,15].

We summarize here the main steps involved. We define

e

p
”chp+?qu

R,,= ’
1= | —(nH,+A,) (p=q), )

nK, (p<q);

(p>q),

and

n.ny

—1pB, . 10
neBP ( )

p

R,=nK, +

For the present case, the first four levels are taken to be
discrete and coupled to upper levels which are converted
to a simple quasicontinuum. For equilibrium, the rate
equations assume the form

aPp 4 P
'—a—t—= > quPq-F 2 qu Y(E;)+R,,=0
g=1 q=35

(p=1,2,3,4); (11)
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AY(E,) 4 p=2
o= 2 RoPet 3 Ry Y(E)+ R, Y(E, )
q9= 9=

+R,, Y(E,)+R, 1), Y(E, 1)

PC
+ 3 R,Y(E)+R,=0, (p>4), (12)
g=p+2

where Y(E, ) is the normalized electronic population den-
sity Y=P, for p>4, with the variable change
E,=— l/pg Ry. As E, (p >4) is a continuous variable, a
Taylor expansion of the population density to second or-
der is used, i.e.,

Y(E,+\)=Y(E,)+(E,+1—E,)Y'(E,)
+HEps1—E,Y"(E,) .
The rate Egs. (11) and (12) then become,

P, ¢ E, B
_ququPq—FfEIREPY(E)dE-Fch—O

at
(p=12,3,4), (13)

S a?;ff) +8, 228 4 B Y(E)+B_, =0
(E>E]), (14)
where
E,=—1/p}

By=1R(,_1,(E,_\—E,)*+ 1R, 11),(E, 11— E,)*,

Bl:R(P (Ep’*'l_Ep)_i-R(p'i—])p(E +1'_E ),

—p p p

(15)
Bo=R,+1)p TRy TR,y »

4 ES,
B_ =3 RqEPq+fE+ Ry pY(E')dE'
qg=1 4

E
+ ij Ry pY(E'dE'+R
‘p+1
and E[,Jr =E,+38,,8,~5(E, ,—E,). Equation (14) is
the desired Fokker-Planck equation. Note that the non-
Markovian terms (p'#p=1,p) are included in B_; and
in the two integral terms in (15); they are found to be very
important at low densities and treated through the itera-
tion cycles. Incidentally, if we eliminate the explicit E
dependence of Y by averaging all the quantities in Eq.
(14) over E, the resulting model is simple and similar to
that of Ref. [3]. In fact, the two- and three-level models
introduced earlier in Ref. [7] are equivalent to such an
approximation. These models can readily be generalized
to plasmas with multiple charge states.
The boundary conditions are

cp ?

Y(Ef)=P,:, and Y(E,)=1,

where P, is obtained by extrapolation from below

(p =4). Equations (13) and (14) are solved by iteration.
To order (3°Y /3E )(AE )3, the resulting solution is
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Y(E)=U"YE)[C,+C,V(E)—F(E)], (16)
where
+B(E)—BY(E
UE)= £ ——1(-)—~2(——)d'EV,
ES B,(E)
_rETUE) =
V(E —fEa+ B,
* U(E)f(E) an
E ~
F(E)—fEr —.BZ(—E)—dE ,
E* ~ ~ ~ ~
f(E)=fE+ {(B_(E)+Y(E)[ByE)—B(E)

4

—BY(E))}dE ,

and ET=~E+8E, where 8E=ApdE /dp=|E|*/? for
E=—1/p? (Ry). This is valid for E > E,. The constants
C, and C, are determined by the boundary conditions, to
be

C,=P,, and C,=V YE,)[U(E,)+F(E,)—P,] .

The magnitudes of the coefficients B,, B,, B, and B _,
in Eq. (14) are often such that B, and B, are small in
magnitude compared to B, and B_;, and By=—B_;,
thus causing a large cancellation for high-lying levels
when Y=1. This can sometimes make the solution nu-
merically unstable. The momentum variable has also been
tried in place of E, but the instability is still present in
some cases, especially at low densities. For the actual
calculation, we have therefore adopted p as the variable
which is continuous for p >4, and have obtained the fol-
lowing rate equations from (11) and (12):
aPp 4 Pe .

p —EI R,P,+ fﬁqu Y(q)dg+R,,=0;

r=123,4, (18)

aY(p)
ap

aY(p,t) =D *Y(p)
2

+
dat ap2 Dl

+DyY(p)+D_,=0;

p>4. (19)
In (18) and (19), we have introduced the quantities
Dy, =3(R 1)y TR p11))
Di=—Rp—1,t R 11y,
Do=Rp11p tRp+Rp—1yp

4 p-2%
D=3 qupq+f4f R, Y(q)dg
g=1

+ [ R, Y¥(q)dg+R
prp+ w1 Rep

with p " =~p+0.5. A slight improvement in the deter-
mination of the end points in the integrals can be made
using the Euler-Maclaurin formula. Equations (18) and
(19) are solved in the same way as (13) and (14).

The B coefficients in (15) are related to the D
coefficients in (20) by
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2

oE
B,=D, [— | ,
2 2 ap
2
Blle 'QE +D2 a—EZ" N
ap op
21
B,=D, .
B_,=D_,.

IV. NUMERICAL RESULTS AND DISCUSSION

We have studied the steady-state solution of the
modified Fokker-Planck rate equations (14) and (19) for
the hydrogen plasma. As the equations are coupled to
the low-lying discrete levels by (13) and (18), we have
solved them by an iterative procedure and obtained the
equilibrium distribution P,,1=<p <4, and Y(p)(p >4),
for t — oo. The transient solutions of these equations will
be studied in a separate report [14]. The nearest-
neighbor approximation adopted in the second-order
Fokker-Planck equation is in general valid when the
higher derivatives and the radiative processes are negligi-
ble. That is, the Markov approximation relies on the
dominance of the collisional processes represented by
K,,, for g=p=+1, over the radiative processes for the
upper energy levels contained in Y(p ). But for plasmas of
interest here, this is a poor approximation. On the other
hand, the iterative solution includes the correction to the
Markov approximation to all orders.

(1) The population density distribution. In Fig. 1, we

3.50 | — T T
[ — DC-n=10"%cm’ ]
3.00 - o BKMn=10"cm®|
s 3 1
T=16K (Ko) ------- DC-nC—IO (;rsn 3
i o BKM-n_=10"cm
250 |- -—— DC-n=10"%m? ]
i a BKM-n=10"%cm™
—_ i
£ 200 ]
& I
1.50 | a
-
100 fo~=pe——rommp oy R
050 L— L ’ |
1 4 7 10 13
P

FIG. 1. The normalized steady-state population distributions
P, (and Y=P, for p > p, =4) are given for three different densi-
ties n, =10"? (solid line), n,=10" (dotted line), and n,=10'3
(dashed line) cm ™3, and T=16000 K. They are calculated from
the discrete-continuum (DC) Egs. (18) and (19). The results are
compared with those from the discrete BKM model (represent-
ed by circles, diamonds, and triangles). We note that the data
points for p < p, =4 are treated as discrete in the theory.
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show the normalized population distributions,
P,,1=p =4, and Y(p)=P,,p >4, for three typical cases,
n.=10'%,10'", and 10'® cm 3, for T=16 000.K, and com-
pare them with those from the full BKM model. The
function P increases rapidly with decreasing p, but Y ap-
proaches unity gradually with increasing p for p >4.
This is the “bottleneck’ behavior, where
L/ 22)
ap P=Py
It is clear from Fig. 1 that p, increases with decreasing
n.. The choice p, =4 is more than adequate for the two
higher densities shown, and only marginal for the case
nc=1012 cm™3. Therefore, in practice, choosing an ini-
tial p, (say, p, =6, for example) will give the correct solu-
tions P and Y, which then reveal the optimum p,. But
the solution is rather insensitive to the initial choice of
Dy as long as it is large enough.

(2) The separation of levels into two groups, discrete and
continuous. In order to illustrate the advantage of an
iterative procedure where all the corrections to the Mar-
kov approximation are included, we present in Table I
the collisional-radiative recombination and ionization
coefficients for the ground state a; and S, respectively,
which are obtained in the Markov approximation (ap-
plied only to the collisional excitation and deexcitation
processes), and compare them with the exact BKM mod-
el results. This is a milder form of the nn approximation
since all the radiative processes contained in the BKM
model are still retained. When all the energy levels are
treated with this approximation, the coefficients aj" and
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ST deviate greatly from the exact rates a? and S% of
BKM model, especially at medium densities where the
collisional excitation and deexcitation processes dom-
inate. On the other hand, when the lowest four levels are
treated separately from the continuum part, we obtain
the results )™~ and SYN which are nearly exact.

(3) Stability of the Fokker-Planck rate equation. In
Table II, we list the coefficients D,, D, Dy, and D_, of
the Fokker-Planck rate equation at T=16000 K and
n,=10"® cm™3 When Y=1, (D,Y+D_,) shows a
severe cancellation at large p,p >7. Such cancellation is
of course expected from (19) when Y'(p) and Y"'(p) are
small. At higher densities, this cancellation becomes
more severe, which suggests that the bottleneck parame-
ter p, may be further reduced. The explicit calculation
supports this.

In the case of the Fokker-Planck equation (14) of the
variable E, the scaling factor dE /dp reduces the
coefficients of the derivative terms by more than two or-
ders of magnitude, as is evident from (21). This results in
much large Y'(E) and Y"(E) than those in the p vari-
able, and makes the numerical calculation less stable.
Thus, although the Fokker-Planck equation in the vari-
able E, Eq. (14), is formally equivalent to that of the vari-
able p, Eq. (18), the latter is preferred in practice at low
densities. The instability of the Fokker-Planck equation
is also present with the momentum variable kK =1/p, even
though the situation is somewhat better than the case
with the variable E. For steady-state solutions, adjust-
ment of p, and setting Y =1 in the non-Markovian terms
gives reasonably good convergence.

TABLE I. The rates a,; and S, defined in Eq. (8) and obtained in the nearest-neighbor (nn) approxi-
mation (for K,;s only), are compared with the exact results (B) for different temperatures and densities.

The nn approximation neglects all the K,

with ¢g#p=£1 in Eq. (1). The entry (NN) denotes the case in

which the lowest four states are treated exactly as discrete levels, but the states with p > p, are treated
as in the nn approximation and p continuous. The numbers in brackets denote multiplicative powers of

ten.

n, T af a™N af” St SN ST
(cm™3) (K) (cm™3/s) (cm™3/s) (cm™3/s) (cm™3/s) (cm™3/s) (ecm™3/s)
1.0[8] 4.0[3] 9.7 —13] 9.4[—13] 9.4[—13] 1.6[—26] 1.5[—26] 1.9[—26]
1.0[14]  4.0[3] 52[—11]  50[—11] 43[—11] 22[—24] 2.1[—24] 6.1[—25]
1.0[18]  4.0[3] 1.9[—7] 1.9[—7] 1.7[—17] 79[—22] 7.9[—22] 7.0[—22]
1.0[8] 8.0[3] 53[—13] 5.3[—13] 53[—13] 1L1[—17] 1.0[—17] 9.64[—18]
1.0[14]  8.0[3] 52[—12] 52[—12] 46[—12] 23[—16] 23[—16] 7.0[—17]
1.0[18]  8.04[3] 2.5[—9] 2.5[—9] 2.4[—9] 1.1[—14] 1.1[—14] 1.0[—14]
1.0[8] 1.6[4] 3.1[—13] 3.0[—13] 3.0[—13] 3.6[—13] 3.6[—13] 3.4[—13]
1.0[14]  1.6[4] 1.0[—12] 1.0[—12] 9.4[—13] 25[—12] 25[—12] 9.2[—13]
1.0[18]  1.6[4] 9.7[—11]  9.7[—11] 89[—11] 23[—11] 23[—11] 2.1[—11]
1.0[8] 3.2[4] 1.8[—13] 1.8[—13] 1.8[—13] 8.5[—11] 8.5[—11] 8.2[—11]
1.0[14]  3.2[4] 32[—13] 32[—13] 3.1[—13] 29[—10] 29[—10] 1.4[—10]
1.0[18]  3.2[4] 12[—11]  12[—11] 1.0[11] 1.1[—9] 1.1[—9] 9.6 —10]
1.0[8] 6.4[4] 1.0[—13] 1.0[—13] 1.0[—13] 1.6[—9] 1.6[ —9] 1.5[—9]
1.0[14]  6.4[4] 1.3[—13]  1.3[—13] 1.3[—13] 3.6[—9] 3.6[—9] 2.1[—9]
1.0[18]  6.4[4] 29[—12] 29[—12] 24[—12] 8.8[—9] 8.8 —9] 7.3[—9]




4286

TABLE II. The coefficients D,, D;, Dy, and D_; of the
Fokker-Planck equation in the variable p are given in units of
sec™!, and at T=16000 K and n, =102 cm 3.

p D, D, D, D_,
5 2.511[7] 2.961[7] —2.523[7] 2.809[7]
6 6.055[7] 6.060[7] —3.904[7] 4.042[7]
7 1.262[8] 1.097[8] —7.015[7] 7.119[7]
8 2.351[8] 1.801[8] —1.218[8] 1.226[8]
9 4.030[8] 2.754[8] —1.996[8] 2.003[8]
10 6.477(8] 3.990[8] —3.105[8] 3.111[8]
11 9.894[8] 5.543[8] —4.625[8] 4.628(8]
12 1.450[9] 7.446[8] —6.645[8] 6.647(8]
13 2.056[9] 9.734[8] —9.264[8] 9.264[8]

V. CONCLUSION

In this paper, a discrete-continuum Fokker-Planck ap-
proach to rate equations for modeling plasmas at low
densities has been presented, where the discrete and con-
tinuum parts are separated at p =p,. This has improved
the reliability of the theory, where the effect of higher
derivative terms and the non-Markovian corrections is
minimized. By contrast, the previous formulation [8§-12]
in which the entire equations are in a continuum form
(19) gives poor results, because the Markov approxima-
tion breaks down for low-density plasmas, and for p <p,.
Since the coupled set (18) and (19) requires iterative solu-
tion, the residual contributions neglected in the previous
treatment can be naturally incorporated without addi-
tional complications. Thus (18) and (19) are exact to the
order of 3%Y /dp3. By definition of p,, the higher deriva-
tive terms for states with p > p, are small.

The numerical study in the case of the hydrogen plas-
ma has shown that in general the variable p is somewhat
more convenient in practice than E or the momentum, al-
though they are formally equivalent. We have found that
the discrete-continuum treatment is especially effective
for low-density and low-temperature plasmas, where the
Markov approximation is poor and radiative effects are
important.
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The theory has been tested here for a steady state, but
is expected to be as effective for the time-dependent prob-
lem [14]. The main reason for this is that the high-
Rydberg states contained in Y(E) have relaxation time
constants that are very small and similar to each other,
but they are quite distinct from those for the low-lying
states. Therefore, it is convenient to treat the upper
states as a continuum and apply the Fokker-Planck ap-
proach.

The improved approach presented here is also applica-
ble to treating complex plasma systems where a large
number of upper levels are mixed by fields and are multi-
ply excited, and where different charge states are present.
A set of Y’s corresponding to different charge states is
then introduced, and the low-lying levels of each charge
state are treated separately. On the other hand, for high-
density plasmas, the simpler approaches of Refs. [2] and
[3] may be suitable. In fact, the model described by Egs.
(18) and (19) approaches that of Ref. [3] at high density
because p, decreases to the lowest unoccupied orbitals.
Furthermore, the earlier two-level and three-level models
[7] were effective at high densities and are similar to
Busquet’s mixed model. Extensions of the present study
to include multiple continua for each specific set of quan-
tum numbers L,S,J, and to different charge states should
be straightforward. Each charge state requires an addi-
tional population function Y, but considerable
simplification can be achieved by “averaging” over some
of the individual channels, as in Ref. [3]. For example, at
a given temperature, effectively only a small number of
charge states are populated, so that the rest of the charge
states may be suitably averaged over.
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